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Magnetic moments and magnetic dipole transitions 
in’deformed 6. nuclei 

V. A. KRUTOV and N. V. ZACKREVSKY 
Physical Research Institute, Leningrad State University, Leningrad, U.S.S.R. 
MS. received 27th Februaq 1969 

Abstract. The magnetic moments of the lowest rotational states of even-even 
nuclei and the probabilities of magnetic dipole transitions between these states are 
calculated on the basis of the model suggested by Krutov in 1968, the non-axiality 
of the nuclear equilibrium shape and the difference between the mass and charge 
distributions being taken into account. The results of calculations are compared 
with the available experimental results, the agreement being reasonably satisfactory. 

1. Introduction 
The magnetic moments of the rotational states of even-even nuclei and the magnetic 

dipole transitions between these states are described at present in a number of rotational 
models (Bohr and Mottelson 1953, Davydov and Filippov 1959, Nilsson and Prior 1961, 
Greiner 1966), all of them being based either on the suggested analogy of the nucleus with 
the ideal liquid drop (Bohr 1952, Bohr and Mottelson 1953) or on the assumption of 
Inglis’s ‘cranking model’ (Inglis 1954, 1956). In  the simple rotational model of Bohr and 
Mottelson the gyromagnetic factors of the rotational states are equal to ZIA. Nilsson 
and Prior (1961) obtained results differing from ZjA, the magnetic moments being calcu- 
lated on the basis of the ‘cranking model’. In  their paper the difference of the neutron 
and proton pairing constants was taken into account. The  difference of the neutron and 
proton distributions was derived by Greiner (1965, 1966) from the discrepancy between 
these constants using the ‘quasi-spin’ model (Kerman 1961) ; the magnetic moments of 
the rotational states were calculated on this basis in the framework of the Bohr-Mottelson 
hydrodynamic formalism, somewhat modified by Faessler e t  al. (1964). The  magnetic 
dipole transitions between the rotational states with P K  = 2 + 2  and P K  = 2 + 0  were 
considered by Greiner (1965, 1966) in the same way. It is worth noting that the admixing 
of M1 transitions with E2 transitions is impossible in the simple rotational model. To 
derive the M1 admixture Davydov and Filippov (their model too is based on the analogy 
with the liquid drop) had to consider terms of the second order of smallness in the magnetic 
dipole moment operatort. 

In  the present paper the magnetic moments of the rotational states are considered on 
the basis of the rotational model suggested by Krutov (1968 a, b, to be referred to as  I 
and I1 respectively). In  our approach the non-axiality of the nuclear equilibrium shape 
and the difference in mass and charge distributions in the nucleus is taken into account, 
The  difference between the parameters of the total deformation of mass and charge was 
calculated from the positions of the first levels in even-even nuclei with P K  = 1-0, using 
the ‘charge oscillation model’ (Krutov 1968 c, to be referred to as 111). The  mass and charge 
non-axiality parameters were derived, respectively, from the energies of the first two rota- 
tional levels with I” = 2 +  and from the ratios of the reduced probabilities of E2 transi- 
tions into these levels from the ground state (Krutov and Zackrevsky 1969, to be referred 
to as IV). Using these values the authors calculated the gyromagnetic factors of the rota- 
tional states with PK = 2 + 0 and I”K = 2 + 2  and the probabilities of M1 transitions between 
these states for a number of even-even nuclei. (The M1 admixture appeared in our approach 
owing to the difference between the charge and mass non-axiality parameters.) The  
results of our calculations are compared with the available experimental data and with the 
calculations by Greiner (1965, 1966). 

f This approach is doubtful as it is based on the fact that the angular momentum and magnetic 
dipole moment are calculated with different accuracy. As is shown by Lipas (1964), the M1 
admixture disappears when both the angular momentum and the magnetic dipole moment are 
calculated with an accuracy up to terms of the second order in the deformation parameter. 
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2. Magnetic moments of the rotational states of even-even nuclei 

with angular velocity w, is given by 
The magnetic moment of a system of charge, distributed with density pe( r’)  and rotating 

(1) 
e m  

p = 2mcJ {r ’  x (pew x r ’ ) )  dr‘ 

r’ being the coordinate in the fixed-body system. This expression for p is similar to that 
for the angular momentum I with the only difference that p( r ‘ )  is replaced by (e/2mc)pe( r’) .  
In  accordance with the model suggested in I only the ‘moving density’ (instead of p(r ’ ) )  
should be taken into account in the expressions for the moments of inertia ( J ,  = hI , /o , ) .  
Its components are equal to 

Pv(r’) = d r ’ )  - bmin(r’))v (2) 

where {pmin( T ’ ) } ~  is the minimum density under the rotation around the I/ axis. 

Then we have 
Evidently a similar replacement should also be carried out in pe( r’)  when p is considered. 

( 3 )  

(4a) 
(4b) 
(4c) 

J,, e 

JV 

YL’ = p B  - Iv = PBgv’v 

where 

JVe = 1 p.,e(7,2 - (x,,’)~) dr’ 

Pve(r’) = pe(r’)  - {(phin(r’)}v 
Jv  = 1 , & { Y ~  - (x,’)~} dr‘ 

and pB = eh/2mc, the nuclear magneton. 
We shall note that the value of Jve so defined can be only conditionally called the proton 

‘moment of inertia’, since the effective moment of inertia J,,, as is seen from the expressions 
for PV and pVe, is not the sum of the corresponding values for the protons and neutrons of 
the nucleus. 

For the practical calculations we shall assume the mass distribution to be represented 
by an ellipsoid with a sharp boundary, and we shall consider the form of the charge distri- 
bution to be the same. (The only values which are different are the deformation parameters 
and the equivalent radii of distribution.) Using the formulae (4a) and 4(b) for the moments 
of inertia from IV, we obtain the following expressions for the gv factors : 

where ,8 and Pe are the total deformation parameters, Y and ye  are the parameters of non- 
axiality, R and Re are the equivalent distribution radii (respectively for mass and charge). 

The  gyromagnetic factor gR for the 11K) rotational state is found to be the mean value 
of the operator c PV4 

(6) 
v - 1  Y 

1 + 1  1 + 1  
- -* p = - - -  
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Neglecting small admixtures of states with K' f K (cf. I1 and IV), i.e. using the symmetric- 
top wave functions OMKI as the rotational ones, we obtain 

1 

The difference between the parameters of mass and charge deformations necessary 
for the calculation of g, may be determined in principle from the values of the moments 
of inertia and the quadrupole moments of the nuclei (see I and 111); however, the differ- 
ence of charge and mass distributions being small, any exact determination of this value 
in such a way is difficult for most nuclei. Therefore, to derive the difference between 
the parameters of total deformation (13- Pe) and between the corresponding radii 
( R  - Re), we shall use the charge oscillations model (111). According to this model the protons 
may oscillate as a whole inside the nucleus, the energy of these oscillations being found to 
be connected with the parameters of mass and charge distributions in the nucleus. The  
lom-lying state with P K  = 1-0  in the deformed even-even heavy nuclei is one such charge 
oscillation, The difference between the parameters of mass and charge distributions can 
be derived from the energies of these states (111) : 

where E,- is the energy of the first level I"K = 1-0 in M ~ V  (we consider Re to be equal 
to 1.216A1'3 fmt). 

150 
(when the energies E,- are known) are given in table 1; the experimental values of El- 
were taken from Begjanov and Rackovyzky (1966) and Backlin et al. (1967). As is seen from 
the results in this paper, the difference in the deformation parameters is not large, although 
it becomes considerable for some heavy nuclei; this fact Is connected with the low positions 
of the levels with P K  = 1-0 in these cases (see 111). 

As is seen from equations (5) and (7) ,  the 2-O-state gyromagnetic factors are independent 
of the non-axiality parameters and may be derived from the energies El- and the parameters 
Pe. Taking into account only the terms of first order of smallness in the expressions for 
the g, factors, we obtain 

The  results of the calculations of p- Pe for the deformed even-even nuclei with A 

The  results of the calculations of gR(20) in accordance with equation (9) are given in 
table 1 for all the deformed nuclei with A 2 150 with known energies E,-, The Pe 
parameter was determined from the experimental data on the quadrupole moments of the 
nuclei (Dzhelepov 1966, Stelson and Grodzins 1965). The experimental values g,(20) 
were taken from the papers by Dzhelepov (1966), LVolfe and Sharenberg (1967), Kurfess 
and Sharenberg (1967), Munck et al. (1966) and Keszthelyi et al. (1965). As is seen from 
table 1, the agreement between the theoretical values of g,(20) and the available experi- 
mental values is satisfactory. Unfortunately, as far as we know the values of gR(20) have 
not yet been measured for the actinides, and this fact limits the possibilities for comparison 
with experiment. 

t It is worth noting that in this case one should use a somewhat larger value for R than in IV. 
However, this specification is not essential for the present as the available data contain considerable 
experimental errors. 
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The parameters of charge and mass non-axiality are necessary to calculate the 2+2-state 
gyromagnetic factors of the non-axial nuclei. For deriving these parameters one may use 
the calculations, carried out in IV, where the parameters of the mass non-axiality were 
determined from the energies of the rotational states with 17K = 2+0 and 2r2, and the 
parameters of the charge non-axiality were calculated from the ratios of the reduced 
probabilities of E2 transitions between these levels. The ratios re l y  taken from IV are 
presented in table 1. The  gyromagnetic factor of the 2 + 2  non-axial nucleus state, in accord- 
ance with equations (7) and (S), is equal to 

The  results of calculations of gR(22) according to equation (loa) are presented in table 1 
in the ninth column. Unfortunately, at present, there are no reliable measurements of 
g,(22) for the nuclei with known energies E,- (for these nuclei the ratios Pe/P and R,jR 
can be derived). For this reason the gR(22) were calculated from equation ( l o b )  using the 
experimental values ofgR(20) (as is seen from table 1, in the cases where the data necessary 
for both formulae are available, the results obtained from (loa) and (lob) are close). 
We know of experiments measuring gR(22) for only two nuclei (1880s and Ig4Pt) (Keszthelyi 
et aE. 1965, RIurroy et al. 1967). The agreement of these results with our calculations is 
quite satisfactory (see table l),? 

It is worth noting that for a number of nuclei, as we have found, the value gR(22) is 
equal to or exceeds unity; the experimental verification of this fact seems to be of great 
interest (in the Davydov-Filippov model the value gR(22) should be close to Z/A for all 
nuclei). But one should bear in mind that the values of ye/y  were, perhaps, derived with 
large errors due to the inaccuracy in measuring the ratios B(E2100 +22)/B(E2/00 +20) 
(see IT). If more precise values of r e l y  are used, the values g,(22) may change. 

3. Probabilities of magnetic dipole transitions between the rotational states of 

In  this section we shall consider the electromagnetic transitions between the first 
rotational states with I’IK = 2 + 2  and 2+0. It is worth noting that in our approach the 
311 admixture to E2 transitions between the 2 + 2  and 2+0 rotational states results from 
the dzyerence in the nuclear parameters of mass and charge non-axiality. 

Now we shall calculate the values connected with this admixture. The reduced prob- 
ability of A l l  transitions between the 2T2 and the 2+0  state is given by 

the non-axial nuclei 

&i’ and M’ being the 2 components of angular momentum in the initial and final states 
respectively. Using the wave functions from I1 or IV and taking into account the most 
significant terms, one obtains 

t We shall note that, according to  Greiner’s calculations (Greiner 1966), the value gR(22) (the 
2 + 2  state is treated by Greiner (1966) as a y-vibrational one) should be close to, but always somewhat 
larger than, gR(20). This  result contradicts the experiment for lasOs and ‘‘*Pt. 
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We shall designate, as usual, the ratio of the intensities of E2 and 311 transition probabilities 
by S 2 :  

1 T(E2122+20) 

where E is the transition energy. Using equation (12) and the results for B(E2122+20) 
from IV and considering only the most significant terms, we obtain 

S A 
E 

where Q ,  is the intrinsic quadrupole moment. The  results of the calculations of lg(S/E)2 
for the nuclei with known energy E,- are represented in figure 1 by the full line. 

T o  increase the possibility of comparison of lg(S/E)2 with experiment the values 
,8/Pe were also determined from the experimental values g,(20) using equation (9). In  this 
case S/E may be written approximately as follows: 

-1 S 1 
- N 0*352&,- 
E 

The results of the calculations with equation (14) are represented in figure 1 by the broken 
line. The  experimental data are represented in figure 1 by triangles and arrows (the arrows 
mark the highest and the lowest limits of the quantity) and are taken from the paper by 
*Greiner (1966). The  nucleus 232Th is the only one among the actinides for which the 
experimental data are available to calculate lg(S/E)2. In  this case our calculations give 
lg(S/E)' = 2-23. 

The  results of Greiner's calculations (Greiner 1966, one of the two calculated curves) 
are represented by the broken line with crosses. 

As is seen from figure 1, our results prove to be rather close to Greiner's results, 
though the models used are different. 

n 

I T 

3 . 0 1  

Figure 1. Relative intensities of E2 and M1 transitions between the 2 + 2  and 2 + 0  
rotational states. The full line represents the results of calculations in accordance 
with equation (13), the broken line those in accordance with equation (14). The 
experimental data are represented by triangles and arrows. The broken line with 

crosses represents the results of Greiner (1 966). 
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